李红霞博士,现任2138cn太阳集团古天乐副教授,硕士生导师。主要研究领域为微分方程数值解解法及应用,金融数学中的模型计算和模拟。获得浙江省151第三层次人才,校中青年骨干教师
Ø 教育与工作经历:
2005年09月至今,2138cn太阳集团古天乐任教
2002年09月-2005年09月,上海大学计算数学专业学习,获博士学位,师从茅德康教授。
1999年09月-2002年09月,上海大学计算数学专业学习,,获硕士学位,师从茅德康教授。
1995年09月-1999年09月,河北师范大学数学教育专业学习,获学士学位。
2012年08月-2013年09月,美国布朗大学应用数学专业,访问学者,合作导师舒其望教授。
Ø 科研项目:
1) “二维流体数值模拟中双曲守恒型方程(组)的熵耗散格式研究”(N 11302188)2014.1-20国家自然科学基金, 23万元(立项金额), 2014.01-2016.12(结项),主持;
2) “半无限变分不等式的牛顿型迭代算法研究” (N.10871168)国家自认科学基金,24万,2009.1-2011.12 (结题),3/5
3) 国家留学基金资助(编号:2011833239, 录取文号:留金法[2011]5025号), 留学期限12个月
Ø 论文、著作:
1. Li Hongxia, Entropy dissipation scheme and minimums-increase-and-maximums-decrease slope limiter, Int. J. Numer. Meth. Fluids 2012; 70(10), 1221–1243
2. Li Hongxia, The Numerical Approximation of the Linear Advection Equation in One Space Dimension, JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012, 272-277
3. Li Hongxia, One explicit scheme for the linear heat conduction equation and the numerical approximation, JOURNAL OF COMPUTERS, VOL. 7, NO. 3, March, 2012, 743-748
4. Li Hongxia, The Numerical Analysis of the Schemes of 1-Order Ordinary Differencial Equations, Research Journal of Applied Sciences, Engineering and Technology 4(2), 2012, 141-144
5. Li hongxia, Numerical Analysis of the Lotka-Volterra Mode, The 2nd intern -ational conference on multimedia technology (IEEE catalog number: CFP1153K-PRT)(ICMT2011), 3579 – 3582
6. Li Hongxia ,An Improvement design of the entropy dissipator of the entropy dissipating scheme for scalar conservation law ,J. Inform. Comput. Sci, 7(8) (2010), 1747-1751
7. Li Hongxia; The Lax-Wendroff Theorem of Entropy Dissipation Method for Scalar Conservation Laws in One Space Dimension, Journal of Mathematics Research 1(1)(2009), 98-101
8. Li Hongxia, Wang Zhigang, Mao Dekang; Numerically Neither Dissipative Nor Compressive Scheme for Linear Advection Equation and Its Application to the Euler System,Journal of Scientific Computing, Volume 36, Number 3,2008, P285-331;
9. Li Hongxia, The Improvement of the Entropy Dissipation Scheme. J. Inform. Comput. Sci, 3(3)(2006), 471-475
10. H. Li and D. Mao, Further development of an entropy diassipating method for scalar conservation laws. J. Inform. Comput. Sci, 1(3)(2004), 147-151