• English
  • 师资队伍
    当前位置: 首页 >> 师资队伍 >> 正文

    姓名:李好好

    李好好


    一、基本信息

    李好好,女,2138cn太阳集团古天乐副教授,大数据统计方法与应用专业硕士生导师。2014年毕业于浙江大学运筹学与控制论专业,理学博士。担任美国数学评论评论员、浙江省自然科学基金评审专家、广东省高层次人材评审专家和中国运筹学会会员。


    研究领域:运筹与优化,包括线性规划、非线性规划、组合优化、在线学习与在线优化。


    主讲课程:《高等数学》《线性代数》《运筹学》《组合优化》等。


    邮箱:hhli@zufe.edu.cn


    二、课题研究

    [1] “区间线性系统的Farkas型定理研究”(项目编号:11701506),国家自然科学基金青年科学基金项目,2018.01-2020.12,主持;


    [2] “两类保密排序问题的算法研究”(项目编号:11526184),国家自然科学基金数学天元基金项目,2016.01-2016.12,主持;


    [3] “极大代数上一般区间线性系统解集特征研究”(项目编号:LY21A010021),浙江省自然科学基金一般面上项目,2021.01-2023.12,主持;


    [4] “基于路径设计的居民雾霾健康成本测度及监管研究”(项目编号:16CTJ010),国家社会科学基金青年项目,2016.06-2019.63/5


    [5] “分散决策模式下的排序问题研究”(项目编号:11271324),国家自然科学基金面上项目,2013.01-2016.126/10


    [6]  “《运筹学》线上线下混合式课程建设,2138cn太阳集团古天乐教学项目,2022.5-2024.52/3.


    三、主要论文

    [1] 李好好, 夏梦雪, 金江红, 区间线性系统的区间解, 《系统科学与数学》, 2021.12, 41(12): 3395-3404, 北大核心.


    [2] J.H. Huang, C. Wang, H. Li, EA solutions and EA solvability to general interval linear systems, Linear and Multilinear Algebra, 2021.11, 69(15): 2865–2881, SCI.


    [3] X. Liu, T. Jiang, H. Li, Weak optimal inverse problems of interval linear programming based on KKT conditions, Applied Mathematics-A Journal of Chinese Universities SERIES B, 2021.9, 36(3): 462-474, SCI.


    [4] H.Li, AE solutions to interval linear systems over max-plus algebra,  Linear Algebra and its Applications, 2019.10, 578: 297-313, SCI.


    [5] 陈倩倩,李好好*, 有服务等级排序博弈问题的混合协调机制研究, 《系统科学与数学》, 2019.3, 39(3): 396-408, 北大核心.


    [6] L. Wang, H. Li*, AE solutions to two-sided interval linear systems over max-plus algebra, Journal of Inequalities and Application, 2018, 291: 1-13, SCI.


    [7] H. Li*, M. Xia, Farkas-type conditions of general interval linear systems for AE solvability, Linear Algebra and its Applications, 2017, 514: 208-221, SCI.


    [8] W. Li, J. Jin, M. Xia,H. Li*, Some properties of the lower bound of optimal values in interval convex quadratic programming, Optimization Letters, 2017, 11(7): 1443–1458. SCI.


    [9] W. Li, M. Xia, H. Li*, Some results on the upper bound of optimal values in interval convex quadratic programming, Journal of Computational and Applied Mathematics, 2016, 302: 38-49. SCI.


    [10] W. Li, P. Liu, H. Li*,Checking weak optimality of the solution to interval linear program in the general form, Optimization Letters, 2016, 10: 77-88, SCI.


    [11] H. Li*, Necessary and sufficient conditions for unified optimality of interval linear program in the general form, Linear Algebra and its Applications, 2015, 484: 154-174, SCI.


    [12] M. Xia, W. Li, H. Li*, Farkas-type theorems for interval linear systems, Linear & Multilinear Algebra, 2015, 63: 1390–1400, SCI.


    [13] H. Li*, J. Luo, Q. Wang, Solvability and feasibility of interval linear equations and inequalities, Linear Algebra and its Applications, .2014, 463: 78–94, SCI.


    [14] H. Li*, An interesting characteristic of phase-1 of dual–primal algorithm for linear programming, Optimization Methods and Software, 2014, 29(3): 497-502, SCI.


    数据科学院-职称 数据科学院-职位

    关闭

    Baidu
    sogou